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P e a Phase transitions in the layered compound FeOC1-C,H2,+1NH2 (n = 10, 12, 14, 16, and 18) have 
been studied by X-ray diffraction, differential scanning calorimetry (DSC), and IR. The transition 
temperature (T,) is approximately 20°C higher than the melting point of each corresponding amine and 
increases with the alkyl chain length. The enthalpy of transition has been estimated from DSC mea- 
surements as ca. 6 kJ/mole. The conformational changes of the alkyl chains during the p s (Y transition 
could be confirmed by infrared studies. o 1988 Academic press, Inc. 

Introduction 

Intercalation between guest compounds 
and layered materials can be divided into 
three classes according to the bonding be- 
tween host layers and guest molecules. In 
sorption-type complexes organic molecules 
are loosely bound to the host layers by hy- 
drogen bonds, ion-dipole interactions, and 
charge-transfer bonds (I, 2). Many interca- 
lation complexes, for example, transition- 
metal chalcogenohalides, belong to this 
type. Clay-organic complexes form an- 
other class (3). In these complexes organic 
cations are bound to the aluminosilicate 
layers by electrostatic interaction. The 
third group comprises organic derivatives 
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of layered inorganic compounds, where or- 
ganic molecules are directly bound to the 
host layers by covalent bonds or by replac- 
ing the outermost atoms of the layers. Only 
a few examples of this type have been re- 
ported in the literature (4-9). 

In metal oxyhalides charge-transfer inter- 
actions between guest molecules and the 
layers are predominant. FeOCl, a member 
of the metal oxyhalides, has a layered 
structure similar to y-FeOOH and belongs 
to the orthorhombic space group Pmmn 
with cell dimensions a = 3.780, b = 3.302, c 
= 7.917 A and z = 2 (10). The crystal struc- 
ture consists of stacks of double layers of 
cis-FeC1204 octahedra sharing edges with 
their neighboring ones (Fig. 1). The outer- 
most Cl atoms form a two-dimensionally in- 
finite layer. The sheets are held together by 
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FIG. 1. The structure of FeOCI, viewed 5” off the b 
axis. 

van der Waals bonds, which allow FeOCl 
to be expanded by the intercalation of guest 
molecules. Iron(II1) oxychloride interca- 
lates ammonia, aniline derivatives (II), 
pyridine, pyridine derivatives (22, Z3), 
phosphine, and phosphite (24). Intercala- 
tion of n-alkylmonoamine also has been re- 
ported (15-17). The basal spacings of n- 
alkylamine intercalation complexes vary 
slightly depending upon thermal treatment. 
In the present paper, the temperature- 
dependent phase transition of FeOCl- 
alkylamine intercalates has been studied 
(see Fig. 2). Such phase transitions occur 
in many layered systems such as lipid 
biomembranes (18), layered silicates (3), 
transition metal disulfides (2U), and perov- 
skite-type layer compounds (21-24). In 
layer perovskites and in lipid biomem- 
branes, the transitions are mainly governed 
by the dynamics of the chains; they imply 
reorientational motions of the rigid chains 
and conformational transitions leading to a 
partial “melting” of the hydrocarbon part. 

Experimental 

(A) Preparation 

Iron(II1) oxychloride, FeOCl, was pre- 
pared from a-FezOj and FeC& (mole ratio 
1 : 1.3) in a sealed Pyrex tube by a chemical 
vapor transport technique. Dark-brownish, 
thin, and plate-like crystals were obtained 
in a temperature gradient of 350-450°C for 
7 days. Excess of adhering FeC& and FeC12 
was washed out by repeated treatment with 
water-free ethanol. Powder X-ray diffrac- 
tion patterns agree with the literature (a = 
3.780, b = 3.302, and c = 7.917 A) (7). 

The intercalates were obtained by direct 
reaction between FeOCl and water-free 
amine. The reaction temperatures were 
slightly higher than the melting points of the 
corresponding amines. Completion of inter- 
calation was monitored by powder X-ray 
diffraction. The basal spacings of the com- 
plexes were calculated from the &l values 
of the basal reflections. 

(II) Analysis 

Powder X-ray diffraction patterns were 
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FIG. 2. Basal spacing of FeOCl-alkylamine complex 
at room temperature as a function of chain length. 
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obtained with a JEOL JDX-5 apparatus 
(Ni-filter, CuKor radiation). For measure- 
ments above room temperature, a special 
sample holder for the X-ray diffractometer 
was constructed. It could be heated electri- 
cally up to 80°C and the temperature could 
be maintained constant within +O.S”C dur- 
ing the measurement. The temperature was 
measured by a Ni-NiCr thermocouple. 

Infrared spectra of the FeOCl-octade- 
cylamine complexes were obtained by a 
Bruker 113 V FT-IR spectrometer equipped 
with an MCT detector. The samples were in 
an evacuated sample chamber, where the 
temperature was kept stable within 1°C. 
The resolution was 1 cm-’ and 400 scans 
were accumulated. The samples were dis- 
persed, in Nujol mull sandwiched between 
CsI windows. 

Differential scanning calorimetry (DSC) 
was carried out with a Rigaku TAS-100 ap- 
paratus, and the scanning rate was 5°C 
min-’ between 25 and 95°C. 

Results and Discussion 

(A) X-Ray Studies 

The reaction conditions and basal spac- 
ings (at room temperature) of FeOCl-n-al- 

TABLE I 

BASAL SPACINGS AND REACTION CONDITIONS OF 
INTERCALATION COMPOUNDS 

Reaction Basal 
conditions spacings 

Guest camp. 
CH,n+,NH, Temp. Time Obs. Calc.” 

(n=) (“Cl (hr) (h 69 

10 21 40 34.6 40.1 
12 45 40 40.2 45.1 
14 45 40 41.5 50.2 
16 65 40 52.0 55.2 
18 65 40 56.3 60.3 

n The calculated basal spacings are obtained by 
assuming extended perpendicular alkyl chains in bi- 
layers. 

FIG. 3. Temperature dependency of basal spacing of 
n-tetradecylamine intercalate of FeOCl. 

kylmonoamine intercalation complexes are 
summarized in Table I. The basal spacings 
of the intercalates are dependent upon reac- 
tion conditions, especially temperature. 
Phases, p and cr, are defined according to 
the basal spacings of the intercalates (3, 4, 
19): the phase stable at room temperature is 
the P-phase and the stable one at high tem- 
perature is the a-phase. 

As depicted in Fig. 2, the basal spacings 
at room temperature increase gradually 
with increasing chain length. The average 
increment of the basal spacing per carbon 
atom is 2.73 A/C atom. The maximum in- 
crease in a monolayer is 1.265 A/C atom if 
the chains in all-trans conformation and 
perpendicular to the layer. The observed 
values are higher than those calculated for 
perpendicular chains in bilayers (1.265 x 2 
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FIG. 4.1. Temperature-dependent basal spacing and 
DSC curve of FeOCl-decylamine. (Dotted line is the 
curve of free decylamine.) 

= 2.53 w/C atom). This might be explained 
by a gradual increase of the tilting angle 
of the alkyl chains with increasing chain 
length (17). 

Similar to many other intercalation com- 
plexes (3, 16, 24), FeOCl-alkylamine com- 
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FIG. 4.3. Temperature-dependent basal spacings 
and DSC curve of FeOCl-tetradecylamine. (Dotted 
line is the curve of free tetradecylamine.) 

plexes show the abrupt decrease of basal 
spacing at critical temperature. In Fig. 3 the 
temperature dependency of the basal spac- 
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FIG. 4.2. Temperature-dependent basal spacing and FIG. 4.4. Temperature-dependent basal spacing and 
DSC curve of FeOCI-dodecylamine. (Dotted line is DSC curve of FeOCl-hexadecylamine. (Dotted line is 
the curve of free dodecylamine.) the curve of free hexadecylamine.) 
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FIG. 4.5. Temperature-dependent basal spacing and 
DSC curve of FeOCl-octadecylamine. (Dotted line is 
the curve of free octadecylamine.) 

ing in FeOCl-tetradecylamine intercalation 
complex is shown. Three regions may be 
distinguished by the basal spacings. The 
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low temperature phase in region a is the p- 
phase. If it is heated above 60°C the high 
temperature a-phase is observed (region c). 
In region b, two phases coexist, but the co- 
existence may disappear when the heating 
rate is slow enough to attain equilibrium. 

The differences of the basal spacings be- 
tween p- and a-phase vary from 1 to 4 A, 
depending on the alkyl chain length (Figs. 
4.1-4.5). 

(B) Differential Scanning Calorimetry 

Calorimetric study of each intercalation 
compound also proved the p G a phase 
transition. The transition temperatures ob- 
tained by DSC are almost identical to those 
determined by X-ray diffraction (Figs. 4. l- 
4.5). 

Although some hysteresis between heat- 
ing and cooling cycle is observed, the value 
of the enthalpy of exothermic peak in cool- 
ing is nearly the same as the corresponding 
values of the endothermic peak in the heat- 
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FIG. 5. FT-IR spectra of FeOCI-octadecylamine at 85°C (above) and 50°C (below). The intensities 
are taken in different scales to reflect the different wavenumber regions. 
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TABLE II 

THEP$a PHASETRANSITIONTEMPERATUREAND 
THE ENTHALPY CHANGE FOR P&Cl-ALKYLAMINE 
INTERCALATION COMPOUNDS COMPARED WITH 
THOSEFORTHECORRESPONDINGAMINES 

Melting of amine p * a transition 
Guest 

C,H2.+,NH2 Temp. AH,,, Temp. A& 
(n =I (“C) (M/mole) (“C) &J/mole) 

10 12 - 30-40 - 
12 27 - 43-50 - 
14 39 40 48-60 6.5 
16 46 46 55-65 6.3 
18 51 57 60-72 6.4 

ing curve. Therefore, this phase transition 
seems to be reversible. 

FeOCl-octadecylamine exhibits two 
peaks in each cycle (Fig. 4.5). The first be- 
longs to the j3 * (Y phase transition. The 
peak at high temperature is probably 
caused by a (~1 e a2 phase transition (3, 4). 

The transition temperature of the interca- 
lates are about 20°C higher than the melting 
points of the corresponding amines, and the 
enthalpies of transition are about 6 kJ/mole 
which are less than those of melting. Ac- 
cording to Lagaly (3), the enthalpies of 
transitions pi s pi+1 and fi $ (Y in alkylam- 
monium-alcanolbeidellite systems are cal- 
orimetrically estimated as 2.9-3.4 kJ/mole 
and ca. 5.8 kJ/mole, respectively. The latter 
is well consistent with our experimental 
value of ca. 6.0 kJ/mole for j3 ti (Y transition 
in alkylamine-FeOCl system (see Table II). 

(C) Infrared Spectroscopy 

Temperature-dependent infrared spectra 
prove the proposed model of phase transi- 
tions (Fig. 5). The spectra of the P-phase of 
the octadecylamine complex exhibit well- 
defined bands which can be assigned to pro- 
gression bands, by analogy to the spectra of 
solid n-paraffins. They are due to nonlocal- 
ized modes and are sensitive to the length 

and conformation of the alkyl chains. Pro- 
gression bands are characteristic of the ex- 
tended chains with all conformations of the 
C-C bonds. In the high-temperature phase, 
the progression bands are no longer ob- 
served. They are replaced by much weaker 
and broader bands due to transitions into 
several conformers. Some bands between 
1300 and 1370 cm-’ result from the local- 
ized vibration modes related to short se- 
quences of bonds with specific conforma- 
tions as in liquid n-alkanes (24) and 
perovskites (21-24). The band at 1309 
cm-’ and perhaps the shoulder near 1370 
cm-’ correspond to kink (* * $tgtg’tt* . . or 
. * .ttgtgtt. . *) defects. The maximum at 
1340 cm-’ in a-phase appears at the same 
frequency as a progression band in the 
spectrum of P-phase; its relative intensity 
in the a-phase increases while the intensity 
of the other progression bands decreases. It 
is therefore assigned to a defect vibration, 
namely end gauche mode (near the methyl 
group). A very weak absorption near 1352 
cm-’ could be due to a small number of 
* . -i%r * . forms. This proves that the p e 
(Y transition is caused by the occurrence of 
gauche defects in the hydrocarbon part. 
The frequency of the fundamental meth- 
ylene rocking mode (rocking of the CH 
bonds in the HCH plane) at 720 cm-’ is not 
modified, which indicates that sequences of 
at least 4 tram bonds still exist (24). 

Table III summarizes an estimation of 
the amine content from the volume increase 
after intercalation and the molecular vol- 
ume of the amine. The change in basal 
spacing is related to the change in packing 
density of the alkyl chains. The average 
amine/FeOCl ratio is 0.55 at low tempera- 
ture and 0.51 at high temperature. The stud- 
ies show that the phase transitions in the 
FeOCl-alkylamine complexes are of the 
same type as in clay minerals (3, 4, 27): an 
ordered P-phase and a more disordered 
a-phase probably with lower packing den- 
sity. 
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TABLE III 

CALCULATION OF AMINE CONTENT OF INTERCALATION COMPOUNDS 

FeOCl . .rCnHzn+ i NH*-Intercalate with n = 

Intercalate: 10 12 14 16 18 

Molecular weight (M): 157.30 185.36 213.41 241.47 269.52 
Density (g/cm’) (p): 0.7936 0.8015 0.8079 0.8129 0.8618 
v, (As: 329.1 384.0 440.3 493.3 519.3 

Low-temp. phase AV 332.8 
Z (molecule/unit cell) 1.01 
x 0.505 

402.7 493.7 549.8 
1.05 1.12 1.11 
0.525 0.560 0.555 

x = 0.55 k 0.03 

603.5 
1.16 
0.580 

High-temp. phase AV 316.6 
Z (molecule/unit cell) 0.96 
x 0.480 

388.9 452.6 497.5 
1.01 1.03 1.01 
0.505 0.515 0.505 

x = 0.51 4 0.02 

568.6 
1.09 
0.545 

Note. V, = MRNHl p L 1 N ; NL, Avogadro number; AV = Ad . a . b; Ad, basal spacing increment; a, b, lattice 
constants; Z = AV/Vnn; Z, number of molecules in the unit cell; x = Z/2. 
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